Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38617252

RESUMEN

Breast cancer is a substantial source of morbidity and mortality worldwide. It is particularly more difficult to treat at later stages, and treatment regimens depend heavily on both staging and the molecular subtype of the tumor. However, both detection and molecular analyses rely on standard imaging and histological method, which are costly, time-consuming, and lack necessary sensitivity/specificity. The estrogen receptor (ER) is, along with the progesterone receptor (PR) and human epidermal growth factor (HER-2), among the primary molecular markers which inform treatment. Patients who are negative for all three markers (triple negative breast cancer, TNBC), have fewer treatment options and a poorer prognosis. Therapeutics for ER+ patients are effective at preventing disease progression, though it is necessary to improve the speed of subtyping and distribution of rapid detection methods. In this work, we designed a near-infrared optical nanosensor using single-walled carbon nanotubes (SWCNT) as the transducer and an anti-ERα antibody as the recognition element. The nanosensor was evaluated for its response to recombinant ERα in buffer and serum prior to evaluation with ER- and ER+ immortal cell lines. We then used a minimal volume of just 10 µL from 26 breast cancer biopsy samples which were aspirated to mimic fine needle aspirates. 20 samples were ER+, while 6 were ER-, representing 13 unique patients. We evaluated the potential of the nanosensor by investigating several SWCNT chiralities through direct incubation or fractionation deployment methods. We found that the nanosensor can differentiate ER- from ER+ patient biopsies through a shift in its center wavelength upon sample addition. This was true regardless of which of the three SWCNT chiralities we observed. Receiver operating characteristic area under the curve analyses determined that the strongest classifier with an AUC of 0.94 was the (7,5) chirality after direct incubation and measurement, and without further processing. We anticipate that further testing and development of this nanosensor may push its utility toward field-deployable, rapid ER subtyping with potential for additional molecular marker profiling.

2.
PLoS One ; 19(4): e0297749, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38687749

RESUMEN

Therapeutic options for managing Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest types of aggressive malignancies, are limited and disappointing. Therefore, despite suboptimal clinical effects, gemcitabine (GEM) remains the first-line chemotherapeutic drug in the clinic for PDAC treatment. The therapeutic limitations of GEM are primarily due to poor bioavailability and the development of chemoresistance resulting from the addiction of mutant-K-RAS/AKT/ERK signaling-mediated desmoplastic barriers with a hypoxic microenvironment. Several new therapeutic approaches, including nanoparticle-assisted drug delivery, are being investigated by us and others. This study used pH-responsive nanoparticles encapsulated ERK inhibitor (SCH772984) and surface functionalized with tumor-penetrating peptide, iRGD, to target PDAC tumors. We used a small molecule, SCH772984, to target ERK1 and ERK2 in PDAC and other cancer cells. This nanocarrier efficiently released ERKi in hypoxic and low-pH environments. We also found that the free-GEM, which is functionally weak when combined with nanoencapsulated ERKi, led to significant synergistic treatment outcomes in vitro and in vivo. In particular, the combination approaches significantly enhanced the GEM effect in PDAC growth inhibition and prolonged survival of the animals in a genetically engineered KPC (LSL-KrasG12D/+/LSL-Trp53R172H/+/Pdx-1-Cre) pancreatic cancer mouse model, which is not observed in a single therapy. Mechanistically, we anticipate that the GEM efficacy was increased as ERKi blocks desmoplasia by impairing the production of desmoplastic regulatory factors in PDAC cells and KPC mouse tumors. Therefore, 2nd generation ERKi (SCH 772984)-iRGD-pHNPs are vital for the cellular response to GEM and denote a promising therapeutic target in PDAC with mutant K-RAS.


Asunto(s)
Desoxicitidina , Gemcitabina , Nanopartículas , Neoplasias Pancreáticas , Animales , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/administración & dosificación , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ratones , Humanos , Línea Celular Tumoral , Nanopartículas/química , Concentración de Iones de Hidrógeno , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Modelos Animales de Enfermedad , Microambiente Tumoral/efectos de los fármacos
3.
Cells ; 13(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38474359

RESUMEN

The aberrant glycosylation is a hallmark of cancer progression and chemoresistance. It is also an immune therapeutic target for various cancers. Tunicamycin (TM) is one of the potent nucleoside antibiotics and an inhibitor of aberrant glycosylation in various cancer cells, including breast cancer, gastric cancer, and pancreatic cancer, parallel with the inhibition of cancer cell growth and progression of tumors. Like chemotherapies such as doxorubicin (DOX), 5'fluorouracil, etoposide, and cisplatin, TM induces the unfolded protein response (UPR) by blocking aberrant glycosylation. Consequently, stress is induced in the endoplasmic reticulum (ER) that promotes apoptosis. TM can thus be considered a potent antitumor drug in various cancers and may promote chemosensitivity. However, its lack of cell-type-specific cytotoxicity impedes its anticancer efficacy. In this review, we focus on recent advances in our understanding of the benefits and pitfalls of TM therapies in various cancers, including breast, colon, and pancreatic cancers, and discuss the mechanisms identified by which TM functions. Finally, we discuss the potential use of nano-based drug delivery systems to overcome non-specific toxicity and enhance the therapeutic efficacy of TM as a targeted therapy.


Asunto(s)
Neoplasias de la Mama , Estrés del Retículo Endoplásmico , Humanos , Femenino , Tunicamicina/farmacología , Línea Celular Tumoral , Glicosilación , Neoplasias de la Mama/patología
4.
Kidney360 ; 5(4): 618-630, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38414130

RESUMEN

Kidney diseases, both acute and chronic, are a substantial burden on individual and public health, and they continue to increase in frequency. Despite this and an intense focus on the study of disease mechanisms, few new therapeutic approaches have extended to the clinic. This is in part due to poor pharmacology of many, if not most, therapeutics with respect to the sites of kidney disease within the glomerulus or nephron. Considering this, within the past decade, and more pointedly over the past 2 years, there have been substantial developments in nanoparticle systems to deliver therapeutics to the sites of kidney disease. Here, we provide a broad overview of the various classes of nanomaterials that have been developed to improve therapeutic development for kidney diseases, the strategy used to provide kidney accumulation, and briefly the disease models they focused on, if any. We then focus on one specific system, polymeric mesoscale nanoparticles, which has broadly been used over 13 publications, demonstrating targeting of the tubular epithelium with 26-fold specificity compared with other organs. While there have been several nanomedicines that have advanced to the clinic in the past several decades, including mRNA-based coronavirus disease vaccines and others, none have focused on kidney diseases specifically. In total, we are confident that the rapid advancement of nanoscale-based kidney targeting and a concerted focus by clinicians, scientists, engineers, and other stakeholders will push one or more of these technologies into clinical trials over the next decade.


Asunto(s)
Enfermedades Renales , Humanos , Nanotecnología/métodos , Animales , Nefrología/métodos , Nanopartículas/uso terapéutico , Nanopartículas/química , Nanomedicina/métodos , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Sistemas de Liberación de Medicamentos/métodos , Sistema de Administración de Fármacos con Nanopartículas
5.
Carcinogenesis ; 42(12): 1461-1474, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34487521

RESUMEN

Previous lung diseases (PLD) are known risk factors for lung cancer. However, it remains unclear how the association varies by lung cancer subtype and socio-demographic characteristics. We conducted a systematic literature search in three electronic databases from the inception of each database up until 13 January 2021. A total of 73 studies (18 cohort and 55 case-control studies) consisting of 97 322 cases and 7 761 702 controls were included. Heterogeneity was assessed using the I2 statistic. Based on the heterogeneity, either the fixed-effects or random-effects model was used to estimate the pooled summary estimate (PSE) and 95% confidence interval (CI) for the association between PLD and lung cancer risk. A history of asthma, chronic bronchitis, emphysema, pneumonia, tuberculosis, and chronic obstructive pulmonary disease (COPD) was associated with higher lung cancer risk, with a history of COPD and emphysema having at least twofold relative risk. A history of hay fever was associated with lower lung cancer risk (PSE= 0.66, 95% CI= 0.54-0.81), particularly among ever-smokers (PSE= 0.55, 95% CI= 0.41-0.73). Individuals with a diagnosis of asthma, emphysema, or pneumonia within 1-10 years prior to lung cancer diagnosis were observed to have a higher lung cancer risk as compared to those who were diagnosed more than 10 years prior to lung cancer diagnosis. Ever-smokers with a history of COPD or emphysema were observed to have at least twofold relative risk of lung cancer compared to those without this history. Due to the observed association between PLD with higher risk of lung cancer, it is advisable that individuals with PLD should be closely monitored and prioritised for lung cancer screening.


Asunto(s)
Susceptibilidad a Enfermedades , Enfermedades Pulmonares/complicaciones , Enfermedades Pulmonares/epidemiología , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/etiología , Bases de Datos Factuales , Humanos , Enfermedades Pulmonares/diagnóstico , Sesgo de Publicación , Medición de Riesgo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...